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A NUMERICAL INVESTIGATION OF THE ELECTRICAL CP~RACTERISTICS 

OF THE ELECTRODE BOUNDARY LAYER OF A SLIGHTLY IONIZED PLASMA 

OF MOLECULAR GASES 

N. No Baranov, M. S. Benilov, 
G. G. Bochkarev, V. i. Kovbasyuk, 
and G. A. Lyubimov 

UDC 533.924 

The hydrodynamic problem of determining the electrical characteristics of the electrode 
region in a slightly ionized plasma in chemical equilibrium was formulated in [i] and subse- 
quently analyzed more than once. The present article is devoted to a numerical solution of 
this problem. We note that, besides the independent interest, such a solution is also of 
interest for estimating the degree of accuracy of various approximate approaches. 

The problem under consideration is a boundary-value problem for a system of nonlinear, 
ordinary differential equations; for the conditions of practical interest this system con- 
tains two small parameters to the leading derivatives, while in the case of a relatively low 
electrode temperature it also contains a third small parameter in the exponent. Certain dif- 
ficulties arise in the direct numerical solution of problems of this type, and therefore one 
or another simplifying assumptions were made in [2-4], devoted to the numerical solution of 
this problem. For example, in [2, 3] the electrode layer is subdivided into a space-charge 
layer and a quasineutral region, and the solution of the problem is sought separately in each 
region with subsequent joining. In this case the ionization of neutral atoms and the recom- 
bination of charged particles in the space-charge layer are ignored, which prevents a correct 
description of the behavior of the volt-- ampere characteristic curves of the electrode re- 
gion of molecular-gas plasma for high densities of current to the electrode [5]. Some import- 
ant terms of the system of determining equations were not taken into account in [4], and in 
[2-4] the problem was solved by the shooting method. 

An efficient iteration algorithm based on the trial-and-error method is developed in 
the present article to obtain a direct numerical solution of the problem under consideration. 
Calculation results are given for the case of a plasma of combustion products with a potas- 
sign admixture and a wide range of electrode temperatures, and a detailed comparison is made 
with the results of calculations by the analytical equations of [5], obtained by the method 
of joined asymptotic expansions, and with experimental data. 

I. Statement of the Problem 

Let us consider a multicomponent, slightly ionized plasma of molecular gases containing 
neutral components, positive singly charged ions of atoms of one of the neutral components 
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(an easily ionized admixture), and electrons. The plasma borders on a plane, perfectly cata- 
lytic, and is anonemitting electrode. The ionization ofadmixture atomscan occursin collisions 
both with electrons and with molecules of one of the neutral components; electrons or mole- 
cules of this neutral component can take part as the third body in ion-- electron recombina- 
tion. It is assumed that the plasma pressure and the molar concentrations of the neutral 
components are constant, and convective transfer of charged particles is ignored. The plasma 
temperature is assumed to be a given function of the y coordinate (the y axis is directed 
normal to the electrode). 

In dimensionless variables we have the following nonlinear boundary-value problem [i, 5]: 

= - 

le ---- - -  a (z~ + o - l z ~ E ) ;  

, 2b ( t  -~  cze) ( r - -  ziz~); 

4 = - -  i); 

s ~ E '  = z  i - z ~  ; 

~1 = 0 ,  z i  = z~ = 0,  ~1--+ oo, z i - - +  t ,  z ~ - +  1, 

r! x~ LJj eLE o 
~ } = T '  z ~ : ~  I j : - -  E = ~  ,(]-~i,e),,  

Xro ~ ~ Djoonero~ 

nD~ T krl n3 krexr 
a =  ~D~-------~' 0=--~-, b = - - ,  c = ~ ,  

k r l ~ n  ~ kr lX l  

x r d 2 her t - -  0 loo r - -  --05/4e - t ,  x r : - -  t 
Xr~ n ' = m ~ ,  % =  2L 2 , 

D .  L i  ~ , h2 ~ ,, I ~ . _ L ,  De j = - -  e : m ~ . - - ,  eD iooner ~ ' "-7"' 2kT~ 

(i.i) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
(16) 

Here Ji, Je' xi' and x e are the number densities of the diffusional fluxes and the molar 
concentrations of ions and eiectrons; n and T, total particle concentration and the plasma 
temperature; e is the electron charge; E ~ electric field strength; k, Boltzmann constant; 
kr: and kre, recombination rate constants for reactions with the participation of molecules 
of a neutral component and electrons as the third body, respectively; D i and De, coefficients 
of diffusion of ions and electrons (their ratio B is assumed to be constant); x~,molar con- 
centration of the neutral component, the molecules of which take part in ionization and re- 
combination reactions; jo, density of electric current to the electrode (a given value); her , 
quasineutral concentration of charged particles in local chemical equilibrium; I, ionization 
energy of the admixture atoms; L, characteristic scale of variation of plasma temperature; a 
prime denotes differentiation with respect to n; the index ~ is assigned to values of the 
respective quantities in the undisturbed plasma. 

2. Algorithm for Numerical Solution 

The inequality r << i holds for conditions of practical interest. In this case the 
Poisson equation (1.5) is unsuitable for determining the electric field E, since there is a 
small parameter in front of the onlyterm containing the electric field in this equation [6]. 
Therefore, we convert the system of differential equations (1.1)-(1.5) to a form more suit- 
able for numerical solution [7], 

+ (~ - -  I)  zd '  = - -  eEE ~ -6 1 +o ~ ziE --+ ], [sOE' 

[ ~ ~ ]' 2b, 
- r  = [1 +  OE')I  OE% --  

The boundary conditions take the form 
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= 0, z~ = E '  = 0, 11-->-oo, zi---~l, E '- ' -~0.  (2 .1 )  

To obtain the exact solution of this problem we use an iteration process, at each step 

of which the following linearized equations are solved jointly: 

: -  

[__; , - ]  zi.E q- az~ - -  ~a ~ E  - -  Ta E z  i = Z (t + ~ [1 -r-' c ~ - - e 0 E ' ) ]  [(r -}-z~ - -  eOE')  z~ - -  (r -}- z~) r]. 

Quantities marked by a tilde are taken from the preceding iteration. 

The linearized equations are solved by matrix trial and error (we used a generalization 
of scalar trial and error [8] to the case of a system of equations) using a two-point dif- 
ference scheme of fourth-order accuracy [8]. To obtain a solution to within i0 -s requires 
10-30 iterations. 

We note that in the outer part of the electrode boundary layer (in chemical equilibrium) 
the solution is described by simple analytical expressions. For economy of computer time, 
therefore, the interval of numerical integration can be shortened and integration can be car- 
ried out from the wall to the region in chemical equilibrium. In this case the second bound- 
ary condition (2.1) can be replaced by the following condition: 

[50 . {i - -  1 Or' 
~ l = h ,  z ~ = r ,  E = ( l ~ - y - S T ]  : ~+  l r 

The quantity A is chosen large enough so that the distributions of ion concentration and 
electric field obtained from the numerical solution join sufficiently smoothly with the dis- 
tributions in chemical equilibrium. Under this condition the solution proves to be indepen- 
dent of the concrete choice of the quantity A. 

In the region of the boundary layer of space charge (the Debye layer) the step of the 
difference grid must be small enough to assure the desired accuracy. 

After solving the formulated problem one can find the electrode voltage drop and the 
electron density distribution corresponding to a given value of j: 

oo 

~ = S ( E - - E = ) d N  
0 0 A 

Ze : z i  ~ eOE' .  

The calculation of each volt--ampere characteristic curve starts with j = 0, at which 
the choice of the initial approximation is not important; for all subsequent values of j the 
solution obtained for the preceding value is used as the initial approximation. 

As an example of the application of the formulated method, in Figs. 1-3 we present the 
results of calculations for the case of a plasma of combustion products with a potassium ad- 
mixture for a temperature distribution of plasma in the boundary layer described by the mo- 
del equation 

0 ---- t -{- (Ow - -  t ) e - n ,  

where ~w is the dimensionless temperature of the electrode (a given parameter). The quan- 
tities krl and kre were taken from [9], and to calculate the diffusion coefficients we 
used the equations 

( f '  P (T '~  2tpa cmz T " t  a c m  z D ~ - - - - 1 8  
D~ ~ 0.082 ~-~ " ~ scc' \ ~ ' 1  ~ se"c-' 

constructed from the n~erical data of [i0, Ii], where p is the plasma pressure. 

It was assumed that T~ = 2700~ p = 1 atm, L = 1 cm, the molar concentration of potas- 
sium atoms is 1%, and the molar concentration of water molecules (these molecules take part 
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in ionization and recombination reactions) is xl = 18%, and then s = 10 -9 , X = 10-~, B = 
1/220, c = 0.7, and m = 9.3. 

The cathode branches of the volt-- ampere characteristic curves ~w(J) (curve I) and the 
thickness of the Debye layer as a function of the current density, nD(j) (curve 2; for de- 
terminacy, the thickness of the Debye layer is understood as the valse of the ~ coordinate 
at which the difference between the functions z i and z e becomes 10%), are presented in Figs. 
1-3 for the cases of 0 w = i, 0.6, and 0.2, respectively. 

In all cases the volt-- ampere characteristic curve demonstrates ion saturation. In 
other words, when the current density reaches a certain critical value the inclination of 
the volt-- ampere characteristic curve to the current axis starts to increase. 

With a decrease in the wall temperature from e = 1 to e = 0.2 the qualitative form 
W .W 

of the functions ~w(J) and nD(j) changes. Whereas a monotonlc increase in the inclination 
of the volt-- ampere characteristic curves to the current axis is characteristic of the cases 
of e w = 1 and 0.6, in the case of O w = 0.2 the volt--ampere characteristic curve has a bend. 
For 0 w = 1 the dependence of the thickness of the Debye layer on the current density is close 
to linear in the saturation section, for 0 w = 0.6 the rise in n D with an increase in j goes 
considerably more slowly, and for e w = 0.2 there is a sharp increase in n D at the start of 
the saturation section and an ever slower rise with a further increase in j. 

The relative errors of the asymptotic equations for the functions ~w(j) and nD(j) are 
also given in Figs. 1-3. 

The following parametric equations were obtained in [5] to describe the volt--ampere 

characteristic curves of the electrode boundary layer: 

~D 

] = - - 2 % - 1 S  br2d~' 
0 

,ll3w = _  217--1/2~--1/'2 ! [ ! 8--1 bF2dq) dpJ dlf.'l. 

The expected region of applicability of these equations is confined to values of the 
parameter n D which are not too small. The errors in the representations of the functions 
~w(J) and hD(j) given by these equations are plotted with the lines 3 and 4, respectively, 

in Figs. 1-3. 

The following equations were also obtained in [5] for the case of a hot electrode: 
co 

0 

)~1/2] ~_ 2aw? w 
~ ( J )  = 9 2 ~bwr w 

k ~  8 

[ br (8 ~, 3cr) ] 1/~ 
7 ~ r  . 6a " 
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The expected region of applicability of these equations is limited by the inequality 
j < --2awYX-~/2. The errors of these equations are represented by the lines 5 and 6 in Fig. 

i. 

From Figs. 1-3 it follows, in particular, that over most of the section of ion saturation 
the error of the respective asymptotic equations does not exceed 10%. 

3. Comparison with Experimental Data 

I~ accordance with the above, to calculate the volt-- ampere characteristic curves, in 
addition to information about the transfer and kinetic coefficients of the plasma, one must 
assign the profiles of temperature and concentration of admixture atoms in the boundary layer, 
as well as the values of the pressure and the concentration of water molecules. Unfortunate- 
ly, among the numerous reports now published and devoted to the experimental investigation of 
a diffuse discharge, we were unable to find reports in which these quantities were measured 
along with the discharge characteristics. The most detailed data are given in [12, 13], and 
they were taken for interpretation in the present article. 

The measurements of [12, 13] were made in a plasma stream of combustion products at 
atmospheric pressure. The distribution of plasma temperature in the outer part of the bound- 
ary layer (in the region of T ~2000r we note that this distribution proved close to a 
power-law distribution with an exponent of i/I0) and the conductivity in the core of the 
stream were measured along with the discharge characteristics. 

In making the calculations discussed below, the kinetic and transfer coefficients of the 
plasma were calculated just as in Sec. 2, the pressure was taken as 102 Pa, and the molar 
concentration of water molecules as 36%. For the temperature profile in the entire boundary 
layer we used the equation 

k-~- )  , 

where T~ = 2600~ T w = 420 and 520~ ~ = 0.42 cm for T w = 420~ and 6 = 0,36 cm for T = 
520OK. w 

Finally, the molar concentration of the impurity (potassium atoms) was taken as con- 
stant in the boundary layer and was determined from the experimentally measured conductivity 

of the stream core: 

x~ = 2 ,7 . t 0 -5  (S---/~--m) 2. 

The calculated thickness YD of the Debye layer at the electrode, which is at a floating 
potential, as a function of o is presented in Fig. 4 (curves 1 and 2). The quantity YD was 
defined as the distance from the electrode surface at which the charge separation is 10% 
(curve i) or 1% (curve 2). The experimental data of [12], obtained by the plasma-condenser 
method, are plotted with points. The agreement between theoretical and experimental data is 
satisfactory. 

In Figs. 5 and 6 we present theoretical volt-- ampere characteristic curves (lines) and 
experimental points [~$ = (kT~/e)~w] for T w = 420 and 5200K, respectively. Curve ! and the 
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light points correspond to o = 1 S/m, curve 2 and thecrosses to a 3=S/m, and curve 
3 and the dark points to ~ = 5 S/m in Fig~ 5 and o = 5~ S/m in Fig~ 6o The general 
form of the theoretical and experimental characteristic curves is the same [for example, it 
is interesting to note that both the theoretical and the experimental values of ~ for the 
case of T w = 420~ (see Fig. 5) exceed by several times the corresponding values for the 
case of T w = 520~ (see Fig. 6)], although quantitatively the theoretical voltage drops ex- 
ceed the experimental ones. This disagreement increases with an increase in ~o W" 

One of the possible causes of this disagreement is that the values of the kinetic coeffi- 
cients and the plasma temperature distribution adopted for the calculation do not correspond 
to the experimental conditions. As an example, in Fig. 6 we present theoretical curves for 
the case of o = 5.8 S/m, in the calculation of which we successively increased the values 
of the function krlx~(y) by an order of magnitude (curve 4), increased the content of potas- 
sium atoms by five times (curve 5), and reduced the exponent in the temperature distribution 
law to :/i= (curve 6). It is seen that these curves are in considerably better quantitative 
agreement with the experimental characteristic curve. 

For a final clarification of the causes of this disagreement, new experiments must be 
run satisfying the requirements listed in the present section. 
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THEORY OF ANISOTROPIC FERROMAGNETIC COLLOIDS 

V. M. Suyazov UDC 538.4:532.584 

Introduction. In present theoretical descriptions of the flow of a ferrofluid (a sta- 
bilized surface-active colloid consisting of ferromagnetic particles in a fluid carrier) 
various approaches and approximations have been used [1-12]. One of the first hydrodynamic 
models of a ferrofluid [i] assumed that the magnetization relaxation time T was small in 
comparison to the characteristic macroscopic times of the problem; in this case one can put 
T = 0, and consider the magnetization of the medium as given by an equilibrium equation of 
state. 

Unlike this approach, in [2-4], models were developed where the relaxation time ~ is 
finite, so that the change in magnetization is given by a relaxation equation, which together 
with the other equations of the theory describe the magnetization dynamics of magnetically 
isotropic ferrofluids. From the microscopic point of view, magnetic isotropy of the ferro- 
fluid implies that the magnetization is frozen in the particles or the generalized magnetic 
anisotropy constant K of the particles is infinite. This means that the orientational change 
of the magnetization in these models is determined entirely by the rotation of the particles 
(Brownian relaxation [5] with relaxation time T2). 

In the case where the thermal energy kT is comparable to the (finite) magnetic aniso- 
tropy energy of a particle kV, where V is the volume of a particle and k is the Boltzmann 
constant, the latter energy is not large enough to keep the magnetic moment frozen inside 
the particle against the thermal fluctuations. The orientational change of the magnetization 
in the general case where the magnetic moments are partially frozen will be determined both 
by diffusion of the moment with respect to the particle (N~el relaxation with relaxation time 
r~ [5]), and by the Brownian rotation of the particles, which for hydrodynamical flow and 
for T~ << ~= will determine the macroscopic magnetic anisotropy of the ferrofluid. 

The first treatment of the effect of partial freezing of the magnetic moments on the 
effective viscosity of the ferrosuspension was considered in [i0]. However, this treatment, 
based on kinetic ideas, did not yield a definite formula for the effective viscosity, which 
would contain the previously known formula for the rigid magnetic dipole model, or a general 
macroscopic equation of motion. 

A series of papers [8, ii, 12] are of interest, in which a general macroscopic equation 
was formulated taking into account the finiteness of the magnetic anisotropy energy of the 
particles by introducing into the theory a macroscopic vector parameter A defined as the 
internal magnetic anisotropy field. In the equilibrium state this parameter is taken to be 
proportional to the magnetization A = am, where the coefficient ~ is defined as a parameter 
giving the degree of freezing of the magnetic moments with respect to the particles. 

Calculations of the dependence of the viscosity on the field strength ~ in a state of 
partial equilibrium using these equations [8] yields remarkable agreement between theory and 
experiment for a suspension of magnetite in kerosene. However, this agreement should not be 
taken as unequivical support for the above interpretation of the parameter a (or for the 
assumption that the deviation of the experimental viscosity dependence from the rigid dipole 
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